Analysis of Sparse Cutting-plane for Sparse IPs with Applications to Stochastic IPs

نویسندگان

  • Santanu S. Dey
  • Marco Molinaro
  • Qianyi Wang
چکیده

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed integer linear programs (MILP) with sparse formulations. We examine three kinds of problems: packing problems, covering problems, and more general MILPs with the only assumption that the objective function is non-negative. Given a MILP instance of one of these three types, assume that we decide on the support of cutting-planes to be used and the strongest inequalities on these supports are added to the linear programming relaxation. Call the optimal objective function value of the linear programming relaxation together with these cuts as z. We present bounds on the ratio of z and the optimal objective function value of the MILP that depends only on the sparsity structure of the constraint matrix and the support of sparse cuts selected, that is, these bounds are completely data independent. These results also shed light on the strength of scenario-specific cuts for two stage stochastic MILPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating polyhedra with sparse inequalities

In this paper, we study how well one can approximate arbitrary polytopes using sparse inequalities. Our motivation comes from the use of sparse cutting-planes in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In ord...

متن کامل

How Good Are Sparse Cutting-Planes?

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cuttingplanes? In order to understand this question better, given a polyope P (e.g. the integer hull of a MIP), let P be its best appr...

متن کامل

Interior Point and Semidefinite Approaches in Combinatorial Optimization

Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optimization, and the development of efficient primal-dual interior-point methods (IPMs) and various first order approaches for the solution of ...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015